

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Pysh

This repo contains exploratory work motivated by the following
challenge:

	Python is in general excellent for writing code that cleanly says
what one means to say, without a bunch of excess ceremony or
boilerplate.

	Yet when it comes to invoking external programs, passing
command-line arguments, and consuming their output or wiring them up
in pipelines, the usual Python code for it feels verbose and complex
compared to a shell script… let alone a “one-liner” one might type
at an interactive shell prompt.

As a result, even in 2019 many of us continue to routinely write
those one-liners, as well as longer shell scripts.

	Can we get the concision and power of the shell, in its domain –
while keeping all the clarity and robustness that’s possible to
achieve in a modern programming language like Python?

pysh, the Python library

One thread of this work is an experimental – but working! –
Python library that aims to meet our challenge for pure Python
scripts, as far as that’s possible.

Most of the ideas needed for this, and even most of the code, will
also be required for a full-blown Pysh shell like the design discussed
below; so this also serves as a way to experiment on that design.

The pysh library works today, though there are further features that
would be useful and interesting to add. For some small demos, on real
scripts originally written in Bash, see the example/
directory.

The implementation, in pysh/, also contains many small examples in
the form of unit tests. To run the unit tests (as well as tests of
the example/ demos), simply run pytest [https://docs.pytest.org/]:

$ pytest -q
............ [100%]
12 passed in 0.39 seconds

Usage

See detailed usage and examples in pysh/README.md.

Installing

The library is pysh-lib [https://pypi.org/project/pysh-lib/] on
PyPI. You can install it with a command like:

$ pip install --user pysh-lib

Pysh requires Python 3.6+.

Pysh, the design sketch of a new shell

Another thread of this work is in design.md. This is a
speculative design sketch for an attempt to meet our challenge across
its full range, including everyday interactive use:

Pysh is a new shell that scales smoothly from everyday interactive
commands as short as ls through 300-character “one-liners” as
conveniently as Bash, and up through many-KLoC programs with the
robustness of a modern programming language.

See design.md for many more details on design and
(hypothetical!) implementation.

The core of this hypothetical new shell is Python: it runs by
transforming to Python bytecode, and its syntax for scripts is Python
with certain extensions.

The name “Pysh” stems from this vision.

Trying it and contributing

If this challenge sounds interesting or important to you, please try
the pysh library, read the full-blown-shell design doc,
and send us your feedback!

We’re especially interested in hearing about your experience trying to
use pysh in scripts. Take a look at the demo scripts in
example/; then look at some script of your own, or an
interesting small piece of one, and try converting it to use pysh.

	How does it compare to the original?

	What patterns are awkward to express in pysh?

	What patterns do you not see a good way to express?

Let us know in a GitHub issue, or send mail to Greg Price at
gnprice-at-gmail.com.

Remember this is experimental software: expect to find bugs, and
expect the API to change with future development.

When you do find a bug, or especially if there are roadblocks or rough
edges that get in the way of you even trying it, please let us know –
either an issue or a PR is very welcome.

Pysh

Status

This is a sketch of a design of a possible prototype. We consider it
an open problem whether a point exists in the design space that meets
the described constraints.

Parts of this document may take the authoritative tone of a
specification or a reference manual. These should be read as you
would read a work of science fiction.

Goals / Principles

Pysh is a new shell that scales smoothly from everyday interactive
commands as short as ls through 300-character “one-liners” as
conveniently as Bash, and up through many-KLoC programs with the
robustness of a modern programming language.

Principles include:

	The syntax is regular enough to make it easily predictable whether a
given fragment of a command will provide a literal string,
substitute a variable’s value, or execute code.

	Simple commands are simple: ls -l src/*.c requires as little
ceremony as in Bash.

	…

Design choices include:

	The shell’s execution model is Python, working with Python objects:
a Pysh variable can hold a dict mapping strings to lists, and a Pysh
function can return a list of strings, just like Python variables
and functions.

	A Pysh command can embed fragments of code in a variant of Python,
called Shython; and conversely, a Shython expression can embed Pysh.

	…

Shython

Shython is based on Python 3.7, with its syntax extended in a small
number of ways.

These are pure “extensions” of Python’s syntax, in the sense that
every syntactically-valid Python program parses as a Shython program
with the exact same meaning. (Or so we believe! For sh { ... } in
particular I won’t feel quite certain without some careful analysis of
the formal grammar.)

	The big one: in addition to all the usual forms from Python, a
Shython expression may be a Pysh escape, written sh { ... }
where the braces enclose a Pysh term. When this expression is
evaluated, the Pysh term is executed and its output returned, much
like subprocess.check_output().

(Rough.) More generally, a Pysh escape may have the form
sh(**kwds) { ... }; the plain sh { ... } form is equivalent to
sh() { ... }. The accepted keyword arguments are similar to
those accepted by subprocess: e.g. stderr, timeout, check.

	Small but important: we make a couple of extensions to permit the
full range of Python’s semantics to be used without newlines, in a
one-liner, which is important for interactive use. These build on
Python’s existing use of semicolon ; as an alternative to a
newline for separating statements.

	In Python, the semicolon is only available for separating “simple
statements”, i.e. those that don’t contain other statements. In
Shython, a semicolon can be used to separate any kind of statement.

	In addition to Python’s indentation-based syntax for closing a
block (for control flow, function definition, etc.), a block may
be closed with a new delimiter token ;;:

... | py -l { try: ...;; except: ... }

(Alternatively something like end would feel more Pythonic –
compare ... if ... else ... – but would mean adding a keyword.)

(The worst thing about this syntax may be that it’s visually
pretty subtle. But maybe that’s OK in a one-liner? If it’s
going to last more than a day or so, you should be putting it in
a script and formatting with nice indentation, just like shell or
Perl… and if it’s simple enough to belong on one line even in a
script, maybe the try and except and so on are enough to make
the structure visually obvious.)

Shython is implemented by a modified version of CPython’s parser,
generating bytecode to run on the unmodified CPython interpreter.
Shython programs where no Shython-specific syntax appears produce
exactly the same bytecode as by CPython.

(Or maybe something ends up requiring us to make some changes to the
actual runtime part. But holding the line on that would have a lot of
value, in being able to successfully reuse Python libraries in a
Pysh/Shython script.)

Pysh

High-level structure

A Pysh program is made up of commands. These are composed via a
variety of control-flow and data-flow constructs, for which the atomic
unit is a simple command.

Simple commands, in turn, are built out of expressions. To execute
a simple command, the expressions are evaluated and their values used
to construct a list of strings. This list is used as the name and
arguments of a program to run, or a shell function or builtin.

Expressions

(Correspond roughly to Bash “words”.)

An expression ultimately corresponds to a Shython (or Python)
expression, and is used to produce a list of strings.

The concrete syntax of Pysh expressions is optimized for
zero to low overhead in the simple cases ubiquitous in shell use –
git is a string literal, and $file a variable reference – and
understandable structure in complex cases.

Expressions have the following forms:

	A literal, e.g. ls: a string consisting only of a certain set
of characters (at least [a-zA-Z0-9./_-]; excluding at least
[][~$* \t\n'\\]; ?? others) can be written as itself, with no
quoting. An arbitrary string can be written by backslash-escaping
characters otherwise disallowed.

	Non-alphanumeric characters may be backslash-escaped even if
otherwise allowed, just as in Perl regexes.

	A quoted literal, e.g. 'hello world': a string enclosed in
quotes may contain a wider range of characters without
backslash-escaping – notably, spaces.

	(?? Haven’t formed a strong view yet on which of many design
choices to take here. This is a convenience feature whose one
really important function, with word-splitting out of the picture,
is to not have to type backslashes before spaces all the time; so
lots of possible choices will work fine.)

	A variable reference, e.g. $file: a dollar sign $ followed by
an identifier means a reference to the named variable.

	A command substitution, e.g. $(git grep -l TODO): the delimiters
$(...) enclose a Pysh command. This expression is equivalent to
the Shython expression sh { ... } enclosing the same command.

	A Shython substitution, e.g. ${foo[bar+1]}: the delimiters
${...} enclose a Shython expression.

This takes the place of Bash’s array references; arithmetic
expressions; and most or all of the fancy “parameter
expansions” [https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion].

	A glob pattern, e.g. src/*.[ch]: evaluates to the list of
matching filenames etc.

	A tilde expression, e.g. ~greg/foo. ()

	(?likely) a brace list, e.g. foo/bar/{baz,quux}

(First main gap: basic string concat like dir/$file. Can always
handle with Shython substitution, and F-strings help a lot:
${f'dir/{file}'}. But that example is still 7 extra characters, 3
total layers of delimiters.)

(Second main gap: further basic string handling like
build/${file%.c}.o. Python is weak at this:
${f'build/{file[-2]}.o'} is much less clear. Short of other
assistance in the language, I’d probably go back to a lot of stuff
like $(echo $file | sed 's/\.c$//'). Tempted to give Shython some
special syntax for e.g. regexes.)

Commands

Simple Commands

(Or “command”? Not yet clear what’s the clearest way to draw the
concepts. … Possibly “command line”? Below I kind of want a name
for element 0 of the arglist after expansions; the Bash manual calls
that “the command itself”.)

A Pysh simple command is a sequence of expressions, written
separated by whitespace.

Each expression must evaluate to a list of strings, or to a value
convertible to a list of strings through one of a handful of defined
conversions:

	A string s is converted to [s].

	An int n is converted to [str(n)].

	A value x which has a __shell__ method is converted to
x.__shell__().

When a simple command is executed:

	Each expression is evaluated, and its result converted to a list of
strings.

	The resulting lists are concatenated.

	The combined list is executed in the usual fashion: element 0 is a
program to be executed, or a shell builtin or shell function, and
the full list is its arguments.

Shython Commands

A Shython command can appear in all the same syntactic contexts as a
simple command. It takes the form py [OPTS] { ... }, where the
braces enclose a Shython block.

In general, with details varying depending on the options passed: when
this command is run, the enclosed block is executed one or more times.
It may produce values to be printed to its standard output; it may
receive its standard input as one or more local variables like _.

When run, a block may produce zero or more values in any one of the
following ways:

	If the block consists of a single expression (and contains no
yield expression), then it produces that expression’s value.

	Otherwise, the block behaves like the body of a Python function
definition:

	If it contains no yield expression, then return produces the
returned value, and finishing without return produces None.

	If it does contain a yield, then each yield produces the
yielded value.

When a value produced by the block is printed to the command’s output,
it is converted to a string as follows:

	A string is used unmodified.

	None converts to empty output (much like at a Python REPL.)

	An int or float is converted with str(...).

	Any other value is an error.

(This probably needs to be more complicated… but your average
str or repr is of little use if printed for a human and less
than none in a pipeline, so I wouldn’t want the rule to be one of
those like it is at the REPL. And of course you can always apply
whatever conversion you want explicitly.)

Execution happens as follows:

	With no options, the block is executed once.

If the command’s stdin comes from a redirection or pipe, then the
complete input is provided as a string in the local _.
Otherwise, stdin is not read from.

(I don’t love this rule; it feels liable to surprises. But I also
don’t want every nontrivial Pysh script to pick up apt’s
surprising behavior of eating its input even when
noninteractive…)

	With --iter (*), the local _ is set to an iterator which yields
in turn each line of the command’s input, with its newline removed.
Each produced value has a newline appended before printing, except
that a produced None is ignored, as if nothing was produced.

(*) (Alternate names: --whole? --iter-lines? Needs a short
name: -i? -w?)

	With -l/--lines, the command is executed much as if wrapped in
a loop inside --iter:

py --iter {
 for _ in _:
 ... # the given block
}

That is: the block is executed once for each line in its input,
with _ set to the line with its newline removed; and produced
values are treated as with --iter.

Unlike the hypothetical loop above: return means ending this
execution of the block, as always, after which the block is
executed for the next line; and the break statement is available,
and ends the execution of the whole loop.

	(Some analogue / better version of perl -ne '... END { ... }'?
Or maybe you just take that outside the pipeline, enjoying the fact
it’s the same program inside and out. Example below.)

(I feel like there’s a couple of logically-orthogonal axes here that
several of these options are acting on both of: whether to operate on
the whole, or an iterator of records, or once per record; and how to
parse and unparse records, like terminator chop/append, or JSON.
Probably the options really should be non-orthogonal – I rarely use
perl -p or perl -n without -l, and just discovered last week
that perl -l implies -n – but the spec can probably benefit from
some refactoring.)

Several options modify the handling of input and output:

	With -0, the “line” terminator for -l or --iter is a null
byte, rather than newline. Implies -l, unless --iter is
specified.

	With -a, each line (or “line” with -0) is split with .split()
and _ is set to the resulting list. Implies -l, unless
--iter is specified.

(Or maybe this is superfluous because str.split is right
there?)

(Also, this definition means if you use -a you get only the list
of fields and not the string of the whole line. With perl -a
it’s pretty common to use both the split and unsplit line, as in
perl -lae 'print $F[0] if (/.../)'.)

	With -j, the input is parsed as a sequence of JSON values, and
the block is executed once with _ set to each value in turn.
Each resulting value is converted with json.dump in place of the
conversions described above, followed by a newline.

In conjunction with --iter, the block is executed once, with _
set to an iterator that yields the parsed JSON values, and with
output processed in the same way.

(Overlaps a bit with jq which is hard to compete with, but I
think there are cases where integration with Python – perhaps
especially with a surrounding Shython program – is what’s needed,
and this beats an explicit json.load/json.dump.)

	(Maybe a way to name parameters? Especially handy with -a.)

	… (Surely more.)

Examples

	Phrasebook entry for perl -n – use return (or yield) for Perl
print:

... | py -l { if re.search(..., _): return _ }

	Phrasebook for perl -l with several prints – use yield for
Perl print:

... | py -la { if _[0] == 'yes': for x in _[1:]: yield x }

	Sum up a bunch of numbers:

... | perl -lane 'print $F[0] if (/.../)' \
 | py --iter { sum(int(l) for l in _) }

	Aggregate some data (a bit like Perl’s END { ... }):

py { d = defaultdict(0) }
... | py -al { d[_[1]] = max(d[_[1]], _[0]) }
py { for k, v in d: print(v, k) } | sort -rn | head

	… or spitballing another syntax, including some vague thoughts above:

py { d = defaultdict(0) }
... | py -al { v, k: d[k] = max(d[k], v) }
py -nl { d.items() } | sort -rnk1 | head
here `-n` is like `jq -n`

	… or maybe you’d just write

py {
 d = defaultdict(0)
 sh { ... | py -al { v, k: d[k] = max(d[k], v) } }
 items = sorted(d.items(), key=lambda t: t[1])
 for k, v in items[:-11:-1]: print(v, k)
}

Data Flow Constructs

Pipelines and redirections. These work much like in Bash.

(The status quo seems mostly OK here. Redirections sure could be
made less confusing, so that’s an opportunity; haven’t thought
concretely about how to do so.)

Control Flow Constructs

If, while, case, etc.

(Surely case can be improved.)

(Also, though strictly this is probably an expression form, test
aka [– or was that [[? A lot of that is just that if [-z "$flag"] becomes if ${not flag}, etc; but -f and friends are
valuable and need a new or rebuilt home.)

Functions

Some design considerations for function definitions:

	It should be easy to write a function once, and call it from both
Pysh and Shython code in the same program.

	A shell function’s API is a CLI. So the same function needs to have
a reasonable Python-style calling convention, and a CLI.

	In our experience in Bash scripts, a function using echo or
printf is most often doing so where a comparable function written
in Python would use return. Ideally when writing such a function in
Shython we would also use return.

A design:

Shell functions in Pysh are written in Shython; the shell syntax has
no function-definition syntax of its own.

A Pysh function is defined using the Click [https://click.palletsprojects.com] library. A few
differences from normal Click usage make it convenient to call the
same function from other Shython code as well as from Pysh:

	Instead of click.command or click.group, use the decorators
pysh.func and pysh.group_func.

	These decorators return the unmodified function, rather than the
click.Command or click.Group, so the function can be called
normally from Shython.

	Depending on options passed to pysh.func (or .command used
underneath a pysh.func), the function may be exposed to Pysh in
any of several ways:

	With style=expr, when the function is invoked from Pysh as a
shell function (e.g. greet world), its return value is processed
into the command’s output in the same way as for the block in a
Shython command (so like py { greet("world") }).

Failure may be signaled by raising an exception. If the
function’s execution ends with an uncaught pysh.Return, the
command’s exit status will be the exception’s status attribute;
if with any other uncaught exception, status 1; if the function
completes normally, status 0.

(The default?)

	With style=unix, the function is expected to return an int for its
shell return status. The click.echo function may be used to
print output; when the function is executed as a Pysh command,
output printed through click.echo will go to the command’s
output (or its stderr for click.echo(..., err=True).)

(This form seems pretty shell-centric, and unlikely to be useful
to call from Shython.)

	(Others?)

Examples

peel_committish

From git-sh-setup, the shell library shared by many Git commands:

peel_committish () {
	case "$1" in
	:/*)
		peeltmp=$(git rev-parse --verify "$1") &&
		git rev-parse --verify "${peeltmp}^0"
		;;
	*)
		git rev-parse --verify "${1}^0"
		;;
	esac
}

Shython equivalent:

@pysh.func()
@click.argument('committish')
def peel_committish(committish):
 if committish.startswith(':/'):
 committish = sh { git rev-parse --verify $committish }
 return sh { git rev-parse --verify $"{committish}^0" }

And usage:

Pysh
rev=$(peel_committish $revname)

Shython
rev = peel_committish(revname)

Notes:

	This isn’t the strongest example, because you could just write
rev=${peel_committish(revname)} and skip the whole CLI part.

	Uses the $"...{foo}..." syntax Nelson suggested to abbreviate
${f'...{foo}...'}, not yet written up above.

	It’s essential that if either git rev-parse fails, the function
fails. Specced above is “much like subprocess.check_output”,
which does mean that.

Other Important Bits

	Variable definitions/assigments need some thought.
py { foo = bar[baz] } “works”… but adds up to a lot of friction
in the source code crossing the language boundary all the time,
unless you really push all but small bits out into Shython.

	Bytes vs. strings. I’m not sure Python 3’s standard behavior here
when it comes to things like filenames and command-line arguments is
quite what we want. There’s no question of going back to Python 2…
but given how central these are to shell programming, this deserves
close attention and perhaps some adjustments.

	Subshells. Glossed over in some examples above is that in Bash, a
command participating in a pipeline runs in a forked process, even
if it’s entirely within the shell language; while we’d really like
such commands to be able to set and mutate data outside it (in
lexically-explicit ways, of course.) How can we define the
semantics? Maybe the key will be something like that we don’t make
promises about the actual fd 0, 1, and 2, or even sys.stdin etc.,
because we’re handling that data flow in more Python-natural ways.

One especially important aspect of these semantics is streaming: a
py ... { ... } Shython command with --lines or --iter (or
other flags that imply those or similar behavior) should consume
input as it’s produced, and produce output as it’s in turn consumed,
with something like bounded buffers on each side, just like with an
actual system pipe. That way we get output promptly when the
pipeline is slow or if it’s processing real-time input – plus it
helps us keep a bit of a lid on memory consumption, and it means
sticking | head at the end can prevent doing a ton of work.

Interactive Use

Lots of work goes here. But I’m not sure any fundamental new ideas
are needed.

Yet-Further Ideas

This section is even more speculative than the rest of this document.

	This design provides two languages nested inside each other: a
slightly-modified Python, and a new shell.

But as Andy Chu often points out, shell programs tend to have a
number of different languages intermingled: Bash itself, which
comprises a number of language fragments like arithmetic expressions
and fancy parameter expansions as well as the “simple command” core;
the regexps in grep and friends; sed or awk or perl… and a
complex CLI like find is effectively yet another language, as
almost an EDSL.

And there are some gaps in this Python/shell pair. They can always
be filled with grep, perl, and the rest the same way they are in
Bash… but perhaps we can do better? One way of looking at what
this design attempts to do is to let shell code live inside Python
code, and vice versa, in a real parse tree rather than as a string
to be re-parsed through multiple layers and require careful
escaping. How about providing that for some kind of regexp
match/substitution language?

Or even somehow for actual Perl? Though hard to see how that could
be done to a similar degree with the Perl not running on the same
object model and GC etc. (Don’t think I’ve heard anything about
Parrot in quite a while.)

Or for jq? Maybe some kind of generic mechanism to assist with
integrating any language, at least at a syntactic level even if each
command is still entirely a new process.

	Relatedly, maybe a still simpler way to escape into Shython?
E.g. { ... } is Shython, while (...) is another Pysh.

Implementation Strategy

For a prototype, Shython programs are translated source-to-source to
Python.

A modified Python parser finds sh { ... } blocks and handles the
syntax extensions outside them, while a freshly-written parser in a
handy modern parser framework parses Pysh, in mutual recursion.

(??? Obviously plenty of uncertainty. But I’m not thrilled about
pushing the CPython parser super far into fresh new territory.)

A Pysh program is handled basically as if by wrapping it in sh { ... }.

A slightly fancier implementation might generate Python bytecode
instead of source.

Still fancier… well, we’re not going to beat whatever’s the state of
the art in Python implementations, basically by reduction.

Concerns

Many. Among them:

	Startup time.

$ time python -c pass

time: 0.027s wall (0.016s u, 0.008s s)

$ time bash -c :

time: 0.006s wall (0.000s u, 0.004s s)

(each the median of 3 trials)

That will escalate if sourcing kLOCs of Pysh library code, let alone
importing a bunch of Python dependencies to help with some task.

That 27ms beats node at 59ms (or ruby, 78ms); so there’s no
escape by switching to JavaScript, either.

Demos of pysh on example scripts

The files in this directory are for demonstrating how scripts using
pysh currently look, and for exploring what features are important.

They come in threes:

	foo.orig: A Bash script, originally written somewhere else to do
some useful task unrelated to Pysh.

	foo: A port of foo.orig as a Python script using the pysh
library.

	test_foo.py (usually): Tests for foo.

As we make changes to pysh, we update the demo scripts to match
changes in the API. The tests help make sure the scripts remain
accurate as demos.

When pysh is serving a given script’s use case well, the Python
version is only as much code as the Bash version or slightly more,
and each part of it is at least as easy to read. When the Python
version is significantly longer, or the bits that do classic shell
tasks like invoking CLIs and setting up pipelines are more cumbersome
or complicated, that’s an area where there’s more to do.

 Pysh is a library for running external commands from a Python program,
with the usual concision and clarity that Python achieves in other domains.

Usage

Simple commands are simple:

from pysh import check_cmd, try_cmd

check_cmd('gpg --decrypt --output {} {}', cleartext_path, cryptotext_path)

if not try_cmd('git diff-index --quiet HEAD'):
 raise RuntimeError("worktree not clean")

repo_root = slurp_cmd('git rev-parse --show-toplevel')
"slurp" strips trailing newlines, just like shell `$(...)`

Writing command lines

Command lines offer a format-like minilanguage, powered by
pysh.shwords. The format string is automatically split to form the
command’s list of arguments, providing shell-script-like
convenience… but the interpolated data never affects the split,
avoiding classic shell-script bugs.

from pysh import shwords, check_cmd

shwords('rm -rf {tmpdir}/{userdoc}', tmpdir='/tmp', userdoc='1 .. 2')
-> ['rm', '-rf', '/tmp/1 .. 2']

check_cmd('rm -rf {tmpdir}/{userdoc}', tmpdir='/tmp', userdoc='1 .. 2')
removes `/tmp/1 .. 2` -- not `/tmp/1`, `..`, and `2`

A format-minilanguage extension {...!@} substitutes in a whole list:

check_cmd('grep -C2 TODO -- {!@}', files)

Each function taking a command line also has a twin, named with _f,
that opts into f-string-like behavior:

from pysh import check_cmd, check_cmd_f

check_cmd_f('{compiler} {cflags!@} -c {source_file} -o {object_file}')

equivalent to:
check_cmd('{} {!@} -c {} -o {}',
 compiler, cflags, source_file, object_file)

Pipelines

Pipelines are composed with the | operator. Each stage (or
“filter”) in the pipeline can be an external command, or Python code.

Most often pipelines are built from the filters offered in the
pysh.cmd module. You can consume the output with pysh.slurp:

import pysh
from pysh import cmd

hello = pysh.slurp(cmd.echo(b'hello world')
 | cmd.run('tr h H'))
-> b'Hello world'

Or iterate through it:

for commit_id in (cmd.run('git rev-list -n10 -- {!@}', files)
 | cmd.splitlines()):
 # ... gets last 10 commits touching `files`

You can also write filters directly, using the @pysh.filter
decorator. See examples in the example/ tree. This is also the same
API that all the filters in pysh.cmd are built on, so there are many
examples there.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

